
MEASUREMENTS WITH ARDUINO

Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
page 2

Topics covered

- Introduction: what is Arduino

- Embedded systems, microcontrollers, sensors, home automation...

- Ohm's law, resistors, LEDs, opamp, sensors, I2C and SPI protocols

- Arduino : hardware, firmware, software (the "sketch"), the community

- Arduino and the outside world: analog and digital ports, the serial interface

- Sampling Theorem, Nyquist frequency, Antialiasing filters

- Arduino's programming language and its development environment

- The first experiments, breadboards, Prototype Board, PCB

- Reading the value of a potentiometer

- From the value of a potentiometer to the PWM output

- Brightness of an LED

- Continuously variable PWM output

- From the PWM signal to a direct voltage. «Poor man DAC»

- Using a button. Pull-up and pull-down resistors

- The voltage divider

- Resistive sensors: The photocell

- Resistive sensors: GAS sensor

Measurements with Arduino – Ing. Paolo Guidorzi

- The temperature sensor LM35 (analog)

- The thermocouple K temperature sensor (MAX6675 digital interface)

- The temperature and humidity sensors DHT11 / DHT22 (digital interface)

- The temperature sensor DS18B20 (1-Wire digital interface)

- Serial 7-segment display

- Color TFT graphic display (2.8") using Arduino UNO

- Connection of another TFT graphic display (1.8") using Arduino UNO

- Connection of another TFT graphic display (2.2") using Arduino MEGA2560

- External DAC and ADC converters

- Temperature and pressure sensor

- Bidirectional data communication between Arduino and computer (via serial port)

- Data communication from smartphone to Arduino via Bluetooth

- Using of a Multiplexer

- Example of a complete realization: the electronic nose:

- Graphic display

- 16 bit ADC - Humidity temperature pressure sensor

- Data storage on microSD and real-time clock

- Multiplexer

- Gas sensors

MEASUREMENTS WITH ARDUINO
page 3

Measurements with Arduino – Ing. Paolo Guidorzi

- Arduino is a rapid prototyping tool that allows to create small stand-

alone interactive systems.

- It was created for artists, designers, scholars, researchers or anyone

who needs a smart tool for a specific application.

- Both the Arduino hardware and software are open source, and many

ready-made projects can be freely found online (for example on the

www.arduino.cc and www.arduino.org sites)

- It is easy to use, you don't need to be an electronic engineer

MEASUREMENTS WITH ARDUINO
Introduction page 4

Measurements with Arduino – Ing. Paolo Guidorzi

http://www.arduino.cc/
http://www.arduino.org/

- It is programmed from computer with a language similar to C

- It has various inputs and outputs (digital and analog)

- It can be expanded using the so-called Shields, which expand the

possibilities of use and interfacing with other devices and sensors

- Custom expansions for particular uses can be created by users

MEASUREMENTS WITH ARDUINO
Introduction page 5

Measurements with Arduino – Ing. Paolo Guidorzi

There are many versions of Arduino, with different numbers of inputs

and outputs and different computing powers. They all share the same

programming language and environment.

Arduino UNO:

MEASUREMENTS WITH ARDUINO
Introduction page 6

Measurements with Arduino – Ing. Paolo Guidorzi

Arduino MEGA2560:

MEASUREMENTS WITH ARDUINO
Introduction page 7

Measurements with Arduino – Ing. Paolo Guidorzi

Arduino DUE:

MEASUREMENTS WITH ARDUINO
Introduction page 8

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Introduction page 9

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Introduction page 10

MEASUREMENTS WITH ARDUINO
Introduction page 11

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Introduction page 12

Measurements with Arduino – Ing. Paolo Guidorzi

Hardware e software open source..

MEASUREMENTS WITH ADRUINO
Introduction page 13

Measurements with Arduino – Ing. Paolo Guidorzi

Arduino was born in 2005 from another platform for simplified

prototyping, Wiring, created for non-experts, by Hernando Barragan, of

which Massimo Banzi, creator of Arduino, was a supervisor.

Massimo Banzi, David Cuartielles,

David Mellis, Tom Igoe, Gianluca

Martino

The name Arduino comes from

the name of a café in Ivrea where

the team met in their free time.

Arduino d'Ivrea was king of Italy

from 1002 to 1014

MEASUREMENTS WITH ARDUINO
Introduction page 14

Measurements with Arduino – Ing. Paolo Guidorzi

Who are Arduino users?

Makers are interesting people: they are not nerds, they are

rather cool guys who are interested in technology, design,

art, sustainability, alternative business models. They live on

online communities, open source software and hardware

but also on the dream of inventing something to produce on

their own, to live off their own inventions. In a time of crisis

they invent their work instead of looking for a classic one.

(from an interview with Massimo Banzi on Wired)

MEASUREMENTS WITH ARDUINO
Introduction page 15

Measurements with Arduino – Ing. Paolo Guidorzi

- Computer: general purpose, suitable for different needs. Does everything

without being optimized for a particular task

- Microprocessor: data processing unit (generic). Requires external elements

(RAM, peripherals, bus, etc.) to operate. In computers there is a microprocessor

- DSP: microprocessor specialized in mathematical operations related to signal

processing

- FPGA: array of programmable logic ports, in some ways similar to the DSP

- Microcontroller: chip that includes all the main elements to work (volatile and

non-volatile memory, bus, inputs and outputs, etc.)

- Embedded system: "intelligent" electronic device created for a precise function

(e.g. a thermostat, a remote control). Created and optimized for a single task

- Arduino uses a microcontroller, so the board requires only few additional

components to work (a quartz, i.e. the system clock, some voltage regulators, a

chip to communicate with the computer via USB and little else)

MEASUREMENTS WITH ARDUINO
Embedded systems, microcontrollers, sensors, home automation... page 16

Measurements with Arduino – Ing. Paolo Guidorzi

When to use a general purpose device (computer) and when a specialized one

(embedded system) like Arduino?

- Portability

- Special needs

- Miniaturization

- Energy Efficiency

Other examples of small embedded systems commonly used by hobbyists and experimenters:

Raspberry Teensy PIC

MEASUREMENTS WITH ARDUINO
Embedded systems, microcontrollers, sensors, home automation... page 17

Partially compatible with

Arduino (but much more

powerful)!

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Embedded systems, microcontrollers, sensors, home automation... page 18

Measurements with Arduino – Ing. Paolo Guidorzi

Ohm's Law V = R * I

V Volt

I Ampere

R Ohm

I (current)

V (voltage)

R (resistance)

MEASUREMENTS WITH ARDUINO
Ohm's law, resistors, LEDs, opamp, sensors, I2C and SPI protocols page 19

Measurements with Arduino – Ing. Paolo Guidorzi

Variable resistors of various types

Force sensor, potentiometer,

photocell, linear resistive sensor

MEASUREMENTS WITH ARDUINO
Ohm's law, resistors, LEDs, opamp, sensors, I2C and SPI protocols page 20

Measurements with Arduino – Ing. Paolo Guidorzi

LED (Light-Emitting Diode)

- It's a diode

- The current runs through it

only in one direction

- The current must be limited

using a resistance in series

MEASUREMENTS WITH ARDUINO
Ohm's law, resistors, LEDs, opamp, sensors, I2C and SPI protocols page 21

Measurements with Arduino – Ing. Paolo Guidorzi

Operational Amplifiers

Inverting configuration:

Non-inverting configuration:
(if R1=infinite and R2=0 a unit gain buffer is obtained)

𝑉𝑜𝑢𝑡 = −
𝑅𝑓

𝑅𝑖𝑛
𝑉𝑖𝑛

𝑉𝑜𝑢𝑡 = 1 +
𝑅2
𝑅1

𝑉𝑖𝑛

MEASUREMENTS WITH ARDUINO
Ohm's law, resistors, LEDs, opamp, sensors, I2C and SPI protocols page 22

Measurements with Arduino – Ing. Paolo Guidorzi

Gas sensors (analog)

MEASUREMENTS WITH ARDUINO
Ohm's law, resistors, LEDs, opamp, sensors, I2C and SPI protocols page 23

Measurements with Arduino – Ing. Paolo Guidorzi

Digital communication devices

The most commonly used protocols

for communication between intelligent

electronics devices inside of a circuit

are I2C e SPI

I2C: developed in the late ‘70s

2 wires bus: SDA (Serial Data line)

SCL (Serial Clock line)

the devices on the bus are connected to these 2 wires

SPI: Serial Peripheral Interface

4 wires bus: MOSI (Master Out Slave In), MISO (Master In Slave Out),

SCK (Clock), SS (Slave Select, SS1, SS2, .., SSn)

MEASUREMENTS WITH ARDUINO
Ohm's law, resistors, LEDs, opamp, sensors, I2C and SPI protocols page 24

Measurements with Arduino – Ing. Paolo Guidorzi

http://howtomechatronics.com/tutorials/arduino/how-i2c-communication-works-and-how-to-use-it-with-arduino/

BUS I2C

MEASUREMENTS WITH ARDUINO
Ohm's law, resistors, LEDs, opamp, sensors, I2C and SPI protocols page 25

Measurements with Arduino – Ing. Paolo Guidorzi

http://howtomechatronics.com/tutorials/arduino/how-i2c-communication-works-and-how-to-use-it-with-arduino/

https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

BUS SPI

MEASUREMENTS WITH ARDUINO
Ohm's law, resistors, LEDs, opamp, sensors, I2C and SPI protocols page 26

Measurements with Arduino – Ing. Paolo Guidorzi

https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

Comparison between BUS I2C and BUS SPI

- Both are Master / Slave type. The Master always starts communication

- I2C uses 2 wires: SDA (Serial Data line) and SCL (Serial Clock line).

It's relatively slow (100-400 kHz)

There may be multiple Masters and Slaves on the line

- SPI uses 4+ wires: MOSI (Master Out Slave In), MISO (Master In Slave Out),

SCK (Clock), SS (Slave Select, SS1, SS2, .., SSn).

It's fast, it can go up to 25 MHz

One Master and multiple Slaves

MEASUREMENTS WITH ARDUINO
Ohm's law, resistors, LEDs, opamp, sensors, I2C and SPI protocols page 27

Measurements with Arduino – Ing. Paolo Guidorzi

Arduino is made of 3 elements:

- Hardware

- Software

- Community

1. Hardware, i.e. the Arduino physical boards, can vary

in terms of number of ports in/out or the power of the

microcontroller, but they are all programmed with the

same language (simplified C) and through the same development environment (IDE).

2. The software loaded on the microcontroller consists of 2 parts: a firmware, which

remains resident and unchanged (similar to the computer BIOS) and performs the

basic functions, including allowing communication with the computer via USB port

and loading the software developed by the user, and the user program ("sketch").

MEASUREMENTS WITH ARDUINO
Hardware, firmware, software (the "sketch"), the community page 28

Measurements with Arduino – Ing. Paolo Guidorzi

3. The community is Arduino's real strength. The repository of other users'

projects and the forum of the official website are good starting points not to start

from scratch. The open source philosophy of the whole Arduino ecosystem

pushes and invites the user to share in an open and free way (with various types

of licenses) his projects with the whole community. Moreover, the development

environment (the "IDE" of Arduino) already includes thousands of working

examples.

MEASUREMENTS WITH ARDUINO
Hardware, firmware, software (the "sketch"), the community page 29

Measurements with Arduino – Ing. Paolo Guidorzi

Arduino UNO connections to and from the outside world

MEASUREMENTS WITH ARDUINO
Hardware, firmware, software (the "sketch"), the community page 30

Measurements with Arduino – Ing. Paolo Guidorzi

www.pighixxx.com

MEASUREMENTS WITH ARDUINO
Hardware, firmware, software (the "sketch"), the community page 31

Measurements with Arduino – Ing. Paolo Guidorzi

http://www.pighixxx.com/

www.pighixxx.com

MEASUREMENTS WITH ARDUINO
Hardware, firmware, software (the "sketch"), the community page 32

Measurements with Arduino – Ing. Paolo Guidorzi

http://www.pighixxx.com/

Arduino, in addition to communicating with the outside world through its ports, analog and digital (possibly

connected to other devices such as displays, sensors, transducers, relays, ..), can also exchange data

with the computer through its serial port (via USB). This function is often used when debugging the

sketch, to display variable values or processing status.

https://create.arduino.cc/projecthub/wesee/project-kool-temperature-and-humidity-remote-monitoring-e5ddae

MEASUREMENTS WITH ARDUINO
Hardware, firmware, software (the "sketch"), the community page 33

Measurements with Arduino – Ing. Paolo Guidorzi

https://create.arduino.cc/projecthub/wesee/project-kool-temperature-and-humidity-remote-monitoring-e5ddae

Analog inputs of Arduino Interfacing a Joystick

Arduino has some analog input pins, connected to ADC converters

(inside the microcontroller). In the case of UNO and MEGA, they

have 10 bit resolution, so they are capable of discretize an input

voltage in 1024 intervals. If a higher resolution is required, an

external ADC can be used, connected to with Arduino with a bus

I2C or SPI.

https://www.arduino.cc/en/Tutorial/JoyStick

Arduino DUE, thanks to a most powerful

microcontroller, has 2 x 12 bit ADCs and

2 x 12 bit DACs on the board

- Sampling Theorem

- Nyquist frequency

- Antialiasing filters

The input voltage to the ADC

must NEVER exceed the card's

operating voltage (5V or 3.3V for

some models)

ADC RESOLUTION:

10 bit: 5V / 1024 step = 4,88 mV

12 bit: 5V / 4096 step = 1,22 mV

16 bit: 5V / 65536 step = 0,07 mV

24 bit: 5V / 16777216 step ≈ 0,0003 mV

MEASUREMENTS WITH ARDUINO
Arduino and the outside world: analog and digital ports, the serial interface page 34

Measurements with Arduino – Ing. Paolo Guidorzi

https://www.arduino.cc/en/Tutorial/JoyStick

Arduino digital inputs and outputs

All Arduino models have some digital and analog inputs

and outputs. The number and type of these inputs

depends on the Arduino model. For example:

Arduino UNO

- 14 digital ports (6 PWM), configurable as IN or OUT

- 6 A/D converters with 10 bit resolution (1024 values)

Arduino Mega2560

- 54 digital ports (15 PWM), configurable as IN or OUT

- 16 A/D converters with 10 bit resolution (1024 values)

Arduino DUE

- 56 digital ports (12 PWM), configurable as IN or OUT

- 12 A/D converters with 12 bit resolution (4096 values)

- 2 D/A converters with 12 bit resolution (4096 values)

MEASUREMENTS WITH ARDUINO
Arduino and the outside world: analog and digital ports, the serial interface page 35

- Sampling Theorem

- Nyquist frequency

- Antialiasing filters

Measurements with Arduino – Ing. Paolo Guidorzi

Electrically, the digital input and output levels correspond to values of

voltage of 5 V (or 3.3 V for some Arduino models) for the HIGH level

and 0 V for LOW level. There are actually tolerance ranges above

and below to which the logical values HIGH and LOW are recognized:

http://www.maffucci.it/2014/11/05/livelli-logici-ttl-e-cmos-cosa-si-nasconde-dietro-un-high-o-low-di-una-digitalwrite-di-arduino/

TTL

CMOS ARDUINO (5V)

MEASUREMENTS WITH ARDUINO
Arduino and the outside world: analog and digital ports, the serial interface page 36

Measurements with Arduino – Ing. Paolo Guidorzi

Acceptable

voltage

INPUT levels

for TTL

Acceptable

voltage

OUTPUT levels

for TTL

http://www.maffucci.it/2014/11/05/livelli-logici-ttl-e-cmos-cosa-si-nasconde-dietro-un-high-o-low-di-una-digitalwrite-di-arduino/

http://www.maffucci.it/2014/11/05/livelli-logici-ttl-e-cmos-cosa-si-nasconde-dietro-un-high-o-low-di-una-digitalwrite-di-arduino/

TTL CMOS ARDUINO (5V)

MEASUREMENTS WITH ARDUINO
Arduino and the outside world: analog and digital ports, the serial interface page 37

Measurements with Arduino – Ing. Paolo Guidorzi

http://www.maffucci.it/2014/11/05/livelli-logici-ttl-e-cmos-cosa-si-nasconde-dietro-un-high-o-low-di-una-digitalwrite-di-arduino/

Conversion of logical levels

If Arduino is connected to devices that do not use the same logical levels, a level shifting must be done,

using special components or shields created especially for this task. The conversion from 5 V to 3.3 V

could also be done with a voltage divider formed by 2 resistors, but clearly this conversion goes only in a

single direction. Note: the logic levels of communication, i.e. the digital lines, do not necessarily

correspond to the supply voltages of the device.

There are components and shields that allow bidirectional level conversion (BD-LLC):

https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide

MEASUREMENTS WITH ARDUINO
Arduino and the outside world: analog and digital ports, the serial interface page 38

Measurements with Arduino – Ing. Paolo Guidorzi

https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide

This shield board (and similar ones) convert the levels from 5 V logic to 3.3 V logic and vice versa.

The high voltage (5 V), low voltage (3.3 V) and ground must be connected to the board. The incoming 5 V

logic levels from HVn ports are converted to 3.3 V logic levels at LVn ports, and the incoming 3.3 V logic

levels from LVn ports are converted to 5 V logic levels at HVn ports. In this example there are 4 ports

available.

https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide

MEASUREMENTS WITH ARDUINO
Arduino and the outside world: analog and digital ports, the serial interface page 39

Measurements with Arduino – Ing. Paolo Guidorzi

https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide

Example of connection between Arduino UNO (5 V logic) and a 3.3 V logic device. Communication from

serial ports (TX0 and RX0). Note that the Arduino also has a pin in which 3.3 V are directly available (to

power any device that requires this voltage).

https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide

MEASUREMENTS WITH ARDUINO
Arduino and the outside world: analog and digital ports, the serial interface page 40

Measurements with Arduino – Ing. Paolo Guidorzi

https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide

Example of connection between Arduino UNO (5 V logic) and a 3.3 V logic device. Communication via

SPI protocol. 4 wires are used: MOSI (master out, slave in), MISO (master in, slave out), SCLK (serial

clock) and CS (chip select).

https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide

MEASUREMENTS WITH ARDUINO
Arduino and the outside world: analog and digital ports, the serial interface page 41

Measurements with Arduino – Ing. Paolo Guidorzi

https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide

Example of connection between Arduino UNO (5 V logic) and a 3.3 V logic device. Communication via I2C

protocol. In this case the data passing through the 2 wires required by the protocol (SDA and SCL) are

bidirectional, supported by the conversion module.

https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide

MEASUREMENTS WITH ARDUINO
Arduino and the outside world: analog and digital ports, the serial interface page 42

Measurements with Arduino – Ing. Paolo Guidorzi

https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide

MEASUREMENTS WITH ARDUINO
Arduino and the outside world: analog and digital ports, the serial interface page 43

Measurements with Arduino – Ing. Paolo Guidorzi

Sampling Theorem, Nyquist frequency, Antialiasing filters

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 44

FREQUENCY ANALYSIS

TIME FREQUENCY

time

Time

Time

Time

Frequency

Frequency

Periodic

Random

Impulsive

Signal that changes over time, for

example temperature measurement

Measurements with Arduino – Ing. Paolo Guidorzi

Sampling Theorem, Nyquist frequency, Antialiasing filters

Through a mathematical operation, the Fourier Transform, it is possible to analyze a signal, for

example a sound or the time-varying temperature measurement from a sensor, by analyzing

the spectral content (frequency domain) of the signal (time domain).The Fourier theory states

that a time-varying signal can be represented by the sum of infinite sinusoids, with frequencies

varying from zero to infinity, each with a given amplitude and phase. The amplitudes and

phases of these sinusoids determine the waveform and spectrum of the signal. The spectral

components of a given signal, each associated with a specific frequency, can be calculated,

obtaining complex numbers (modulus and phase or real and imaginary part). In practice, not

being possible to analyze all frequencies from zero to infinity, the analysis is limited to a

restricted portion of frequencies. Fast calculation algorithms for Fourier transform exist: FFT =

Fast Fourier Transform.

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 45

2() [()] () j ftX f F x t x t e dt


−

−

= = 

1 2() [()] () 


− +

−

= = 
j ftx t F X f X f e df

(Direct) Fourier Transform
Time Frequency

Inverse Fourier Transform
Frequency Time

Time
domain

Frequency
domain

cos() sen()j te t j t  = +

Measurements with Arduino – Ing. Paolo Guidorzi

Similar considerations can be made on sampled signals, discrete in time and amplitude (DFT,

Discrete Fourier Transform). The integrals of the previous formulas become summations and

the continuous signals become discretized. This means that with digital devices a signal

(temporal sequence of data) can be sampled and analysed in the frequency domain (spectral

analysis). The sampled signal can be represented as a sum of sinusoids (harmonics), each

with a frequency multiple of a frequency called fundamental. Each harmonic has a certain

amplitude and phase characteristic.

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 46

Measurements with Arduino – Ing. Paolo Guidorzi

Approximation of a signal via Fourier Series

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 47

http://www.jhu.edu/~signals/fourier2/index.html

Measurements with Arduino – Ing. Paolo Guidorzi

Signal and its frequency spectrum

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 48

 =
c

f

20 10 5 2 1 0.2 0.1 0.05

10 20 50 100 200 500 1 k 2 k 5 k 10 k

Frequenza, f [Hz]

Lunghezza d’onda,  [m]




Frequency

Wavelength

Example: sound wave

c = speed of sound in air

Measurements with Arduino – Ing. Paolo Guidorzi

Signal and its frequency spectrum

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 49

p Lp

tempo

Frequenza

tempo

tempo

p

p

Lp

Frequenza
Lp

Frequenza

1

2 = 1/3 1

f
2

= 3f
1

f1

f2

f2f1

Frequency

Frequency

Frequency

Time

Time

Time

Example: sound wave

Amplitude

Amplitude

Measurements with Arduino – Ing. Paolo Guidorzi

Time domain and Frequency domain

A variable electrical signal (voltage) at the input of an ADC (Analog to Digital Converter),

coming for example from a sensor that measures a thermodynamic variable such as

temperature or pressure, analyzed for a certain interval of time, has a spectrum that can have

a more or less extended frequency bandwidth, which essentially depends on how fast this

signal changes over time and on the type of variation.

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 50

Measurements with Arduino – Ing. Paolo Guidorzi

Sampling frequency and Nyquist frequency

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 51

T = Sampling interval (s)

1
sf

T
= Sampling frequency (Hz)

2

s
N

f
f = Nyquist frequency (Hz)

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 52

max
2

sff 

The Nyquist-Shannon Theorem states that to sample a signal at the sampling frequency fs

the signal must have a spectrum with maximum frequency fmax lower than the Nyquist

frequency fN (half of the sampling frequency). Otherwise, the part of the signal spectrum

higher than the Nyquist frequency will "fall" into the sampled spectrum, creating artifacts in the

measured values, the so called aliasing.

If a signal is sampled at a certain sampling frequency, the measurement will have a bandwidth

up to the Nyquist frequency, not beyond this limit.

Measurements with Arduino – Ing. Paolo Guidorzi

Nyquist–Shannon sampling theorem example

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 53

https://demonstrations.wolfram.com/SamplingTheorem/

fsampling = 8 kHz

fNyquist = 4 kHz

fsignal = 1500 Hz

fsignal < fNyquist

OK!

fNyquist = 4 kHz

OK

Spectrum: 0 – fNyquist (Hz)

The spectrum is symmetrical

on negative frequencies.

We can ignore this for normal

signals measured with an ADC.

Measurements with Arduino – Ing. Paolo Guidorzi

Nyquist–Shannon sampling theorem example

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 54

https://demonstrations.wolfram.com/SamplingTheorem/

fsampling = 8 kHz

fNyquist = 4 kHz

fsignal = 5000 Hz

fsignal > fNyquist

ALIASING!

Apparent (wrong)

frequency sampled:

3000 Hz

fNyquist = 4 kHz

AL

Measurements with Arduino – Ing. Paolo Guidorzi

Nyquist–Shannon sampling theorem example

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 55

https://demonstrations.wolfram.com/SamplingTheorem/

fsampling = 16 kHz

fNyquist = 8 kHz

fsignal = 5000 Hz

fsignal < fNyquist

OK!

fNyquist = 8 kHz

OK

Measurements with Arduino – Ing. Paolo Guidorzi

Nyquist–Shannon sampling theorem example

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 56

https://demonstrations.wolfram.com/SamplingTheorem/

fsampling = 48 kHz

fNyquist = 24 kHz

fsignal = 5000 Hz

fsignal < fNyquist

OK!

fNyquist = 24 kHz

OK

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 57

https://demonstrations.wolfram.com/SamplingTheorem/

fsampling = 8 kHz

fNyquist = 4 kHz

fsignal = 3500 Hz

fsignal < fNyquist

OK!

fNyquist = 4 kHz

OK

Nyquist–Shannon sampling theorem example

Measurements with Arduino – Ing. Paolo Guidorzi

Nyquist–Shannon sampling theorem example

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 58

https://demonstrations.wolfram.com/SamplingTheorem/

fsampling = 8 kHz

fNyquist = 4 kHz

fsignal = 4500 Hz

fsignal > fNyquist

ALIASING!

Apparent (wrong)

frequency sampled:

3500 Hz

fNyquist = 4 kHz

AL
AL

fNyquist = 4 kHz

Measurements with Arduino – Ing. Paolo Guidorzi

- Arduino is a “SLOW” device and, with normal programming, its ADCs can reach

sampling frequencies around 9 kHz at most, so, in order to avoid aliasing, the

sampled signals can have a bandwidth up to 4.5 kHz

- Other microcontrollers, such as Teensy, are much faster than the Arduino and

can reach higher sample rates (48 kHz and above)

- If the data that Arduino is sampling varies very slowly or is stationary, there are

no problems regarding sampling rate and aliasing

- If the signal in input to the ADC has a bandwidth greater than the Nyquist

frequency, to avoid aliasing the input signal bandwidth must be reduced by

means of a low-pass filter, with cutoff frequency equal or lower than the

Nyquist frequency

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 59

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 60

Full bandwith signal Low pass filtered signal
FFT FFT

LOW PASS FILTERING

LOW PASS FILTERING

Cutoff

frequency

Low-pass filtering

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Sampling Theorem, Nyquist frequency, Antialiasing filters page 61

Example of low pass filter

Signal
Low-pass

filtered

Signal

Low-pass filtering

Temperature sensor

(Thermocouple)

Measurements with Arduino – Ing. Paolo Guidorzi

The Integrated Development Environment (IDE) of Arduino

Arduino connects to the computer via USB. The IDE (Integrated development environment)

is a simple text editor that allows to edit the user’s source code, verify, compile and load it

on the Arduino board. The IDE is cross-platform, it is available for Windows, OSX and Linux.

After installing the IDE, including its drivers, and connecting the Arduino board to the USB

port of the- computer, it will be recognized as a serial port.

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 62

Measurements with Arduino – Ing. Paolo Guidorzi

Now, in the IDE it is necessary to select the type of card in use and its (virtual) serial port. This operation

must be performed only the first time the Arduino card is connected to the computer.

READY TO GO!!

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 63

Measurements with Arduino – Ing. Paolo Guidorzi

The Arduino programming language

All user programs loadable

on Arduino are formed by at least

two parts (plus any others

user-defined functions).

The "mandatory" parts are called:

setup() and loop()

- The setup() function executes the

code enclosed in brackets { } only once,

when starting or resetting the Arduino board. Here the initialization code of the program or

of the peripherals connected to the board must be placed.

- The loop() function executes in infinite loop the part of the code enclosed in brackets { }.

Here the main code of the program must be placed.

- Other functions, created by the user, can be optionally written and called, if required.

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 64

Measurements with Arduino – Ing. Paolo Guidorzi

The “C” programming language syntax implemented in Arduino

The programming language reference guide is available on the official website

https://www.arduino.cc/en/Reference/HomePage

All Arduino programs include:

- Structures

- Values (memorized inside variables and constants)

- Functions

The basic structure of the program consists of the two functions Setup and Loop, but within

these there may be other control structures such as if... else or do... while or for.

The C syntax requires that the curly brackets { } delimit the portion of code executed by the

various control structures.

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 65

Measurements with Arduino – Ing. Paolo Guidorzi

https://www.arduino.cc/en/Reference/HomePage

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 66

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 67

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 68

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 69

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 70

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 71

Measurements with Arduino – Ing. Paolo Guidorzi

Expression true: statement(s) is executed

Expression false: statement(s) is not executed and

instructions subsequent to the while block are executed

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 72

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 73

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 74

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 75

Measurements with Arduino – Ing. Paolo Guidorzi

goto: better not to use it…

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 76

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 77

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 78

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 79

Measurements with Arduino – Ing. Paolo Guidorzi

Note: To prevent that an input pin

to which nothing is connected (e.g.

an open switch) remain in an unknown

or uncertain state, a “pull-up” or

“pull-down” resistor must be used

(this function is also available via

software, see pinMode INPUT_PULLUP)

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 80

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 81

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 82

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
Arduino's programming language and its development environment page 83

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO

Measurements with Arduino – Ing. Paolo Guidorzi

Breadboards vs Prototype Board vs PCB

Breadboard

Prototype PCB

PCB

MEASUREMENTS WITH ARDUINO
page 85

Measurements with Arduino – Ing. Paolo Guidorzi

Reading the value of a potentiometer

Initialize serial monitor

communication

Comments on multiple lines

Single line comments

Initializes the sensorValue variable and assigns it the value read from pin A0

AnalogRead is a function to read an analog value

Prints the value of the variable to the serial monitor

- Potentiometer between mass and 5V

- Central pin potentiometer to input pin A0

- Central pin potentiometer to oscilloscope

S

E

T

U

P

L

O

O

P

_01_WS_AnalogReadSerial

MEASUREMENTS WITH ARDUINO
Reading the value of a potentiometer page 86

Reading the value of a potentiometer

MEASUREMENTS WITH ARDUINO
Reading the value of a potentiometer page 87

Measurements with Arduino – Ing. Paolo Guidorzi

From the value of a potentiometer to the PWM output - Changing the brightness of an LED

Writes the PWM value to the output pin:

sets the pulse width

Re-maps

values from

0..1023 to

0..255

_02_AnalogInOutSerial

print and stay in line

print and «new line»

MEASUREMENTS WITH ARDUINO
From the value of a potentiometer to the PWM output page 88

\t → tab

- Potentiometer between mass and 5V

- Central pin potentiometer to input pin A0

- Output pin 9 to a LED (with 1K resistor)

- Central pin potentiometer to oscilloscope

From the value of a potentiometer to the PWM output - Changing the brightness of a LED

MEASUREMENTS WITH ARDUINO
From the value of a potentiometer to the PWM output page 89

Measurements with Arduino – Ing. Paolo Guidorzi

Continuously variable PWM output

Increase or decrease brightness (PWM)

Change the brightness

(PWM) to positive or

negative

_03_Fade

MEASUREMENTS WITH ARDUINO
Continuously variable PWM output page 90

- Output pin 9 to a LED (with 1K resistor)

- Output pin 9 to oscilloscope

From the PWM signal to a continue voltage. «Poor man DAC»

In Arduino (except for the DUE model) there are no DACs on board, but only ADC inputs. Using the PWM

outputs, however, it is possible to obtain a DC voltage. The frequency of the Arduino PWM modulator is of

about 490 Hz, but it can be modified via some internal registers. Assuming, however, to leave the frequency at

490 Hz, a low-pass filter placed on the output pin allows to obtain a DC voltage, to be used for various uses,

making up for the lack of a real DAC (we will use them soon), but with some limitations. A low pass filter of the

first order is used, built in the simplest way, namely with a resistor and a capacitor, placed at the output of a pin

with signal PWM. Arduino allows to vary the pulse width with a resolution of 8 bits (256 values), from 0% to

100%, i.e. 256 possible pulse widths are possible. A simulation of the effect of low pass filtering, to understand

the limits of this solution, is available on this page :

http://sim.okawa-denshi.jp/en/PWMtool.php

MEASUREMENTS WITH ARDUINO
From the PWM signal to a continue voltage. «Poor man DAC» page 91

Measurements with Arduino – Ing. Paolo Guidorzi

http://sim.okawa-denshi.jp/en/PWMtool.php

- Cutoff frequency about 100 Hz

- Fast to reach maximum

average value

- Very high ripple on output

http://sim.okawa-denshi.jp/en/PWMtool.php

https://en.wikipedia.org/wiki/Low-pass_filter

MEASUREMENTS WITH ARDUINO
From the PWM signal to a continue voltage. «Poor man DAC» page 92

Measurements with Arduino – Ing. Paolo Guidorzi

http://sim.okawa-denshi.jp/en/PWMtool.php
https://en.wikipedia.org/wiki/Low-pass_filter

- Cutoff frequency about 10 Hz

- Less fast to reach maximum

average value

- Still some ripple on output

http://sim.okawa-denshi.jp/en/PWMtool.php

https://en.wikipedia.org/wiki/Low-pass_filter

MEASUREMENTS WITH ARDUINO
From the PWM signal to a continue voltage. «Poor man DAC» page 93

Measurements with Arduino – Ing. Paolo Guidorzi

http://sim.okawa-denshi.jp/en/PWMtool.php
https://en.wikipedia.org/wiki/Low-pass_filter

- Cutoff frequency about 1 Hz

- Slow to reach maximum

average value

- Very little ripple on output

http://sim.okawa-denshi.jp/en/PWMtool.php

https://en.wikipedia.org/wiki/Low-pass_filter

MEASUREMENTS WITH ARDUINO
From the PWM signal to a continue voltage. «Poor man DAC» page 94

Measurements with Arduino – Ing. Paolo Guidorzi

http://sim.okawa-denshi.jp/en/PWMtool.php
https://en.wikipedia.org/wiki/Low-pass_filter

Using a button. Pull-up and pull-down resistors

- Button with built-in LED

- The LED is connected to pin 13

- The button connects pin 2 to the

5 V when pressed

- A 10K resistance is connected

between pin 2 and ground

WHY?

MEASUREMENTS WITH ARDUINO
Using a button. Pull-up and pull-down resistors page 95

Measurements with Arduino – Ing. Paolo Guidorzi

Using a button. Pull-up and pull-down resistors

_04_Button

MEASUREMENTS WITH ARDUINO
Using a button. Pull-up and pull-down resistors page 96

Using a button. Pull-up and pull-down resistors

Without pull-down

resistance

Open button

(LED pin)

With pull-down

resistance

Open button

(LED pin)

With pull-down

resistance

Closed button

(LED pin)

MEASUREMENTS WITH ARDUINO
Using a button. Pull-up and pull-down resistors page 97

Measurements with Arduino – Ing. Paolo Guidorzi

Using a button. Pull-up and pull-down resistors

The digital input, connected to the button, requires

the use of an additional resistor, connected to

ground or to +5V, depending on the circuit. This

because, in the absence of it, when the circuitry

is open (i.e. if the button is not pressed) the input,

high impedance, results in a state indefinite,

picking up disturbances (e.g. 50 Hz mains).

Therefore, the resistance is used to define a state

"by default" at the pin input, that the button leads to 0 or +5V. The use of a resistor

(e.g. 10 KOhm) and not of a direct connection ensures that there are no short circuits

when the button is pressed. So, in the example circuit (pull-down resistor), when the

push button is open at pin 2 there are 0V (ground), when the button is pressed at pin

2 there are +5V.

MEASUREMENTS WITH ARDUINO
Using a button. Pull-up and pull-down resistors page 98

Measurements with Arduino – Ing. Paolo Guidorzi

Pull-up and pull-down resistors

Pull-up Pull-down Internal Pull-up

NOTE: as seen previously, the pinMode function has among its

different modes the option INPUT or OUTPUT or INPUT_PULLUP.

It is possible to set up via software a pullup resistor (about 20K) already present inside the microcontroller.

This operation is (electrically) identical to setting the HIGH logic level of the pin (when in use as output).

pinMode(pin, INPUT);

digitalWrite(pin, HIGH);
pinMode(pin, INPUT_PULLUP)

Internal

logic
Pin

Rpu

Arduino

Enable Pull-up

Vin

MEASUREMENTS WITH ARDUINO
Using a button. Pull-up and pull-down resistors page 99

Measurements with Arduino – Ing. Paolo Guidorzi

The voltage divider

VIN = 5V

I

R1

R2 VR2

VR1

VOUT

𝑉𝑅1 = 𝑅1 ⋅ 𝐼
𝑉𝑅2 = 𝑅2 ⋅ 𝐼

𝑉𝐼𝑁 = 𝑅1 + 𝑅2 ⋅ 𝐼

𝐼 =
𝑉𝐼𝑁

𝑅1 + 𝑅2

𝑉𝑅1 = 𝑉𝐼𝑁 ⋅
𝑅1

𝑅1 + 𝑅2

𝑉𝑅2 = 𝑉𝐼𝑁 ⋅
𝑅2

𝑅1 + 𝑅2
= 𝑉𝑂𝑈𝑇

The potentiometer is a voltage

divider:

- R2 = 0 → VR2 = 0

- R1 = 0 → VR2 = VIN

- R1 = R2 → VR2 = VIN/2

→ Pull-up and pull-down resistors

MEASUREMENTS WITH ARDUINO
The voltage divider page 100

Measurements with Arduino – Ing. Paolo Guidorzi

Other resistive sensors: the photocell

VIN = 5V

RLDR

R

VOUT

𝑉𝑂𝑈𝑇 = 𝑉𝐼𝑁 ⋅
𝑅

𝑅LDR + 𝑅

LDR

MEASUREMENTS WITH ARDUINO
The voltage divider: other resistive sensors: the photocell page 101

Measurements with Arduino – Ing. Paolo Guidorzi

𝑉𝑂𝑈𝑇 = 𝑉𝐼𝑁 ⋅
𝑅

𝑅LDR + 𝑅

_01_WS_AnalogReadSerial

Other resistive sensors: the photocell

Try with both R = 10K and R = 1K

MEASUREMENTS WITH ARDUINO
The voltage divider: other resistive sensors: the photocell page 102

Other resistive sensors: (analog) GAS sensor

VIN = 5V

RS

RL

VOUT
𝑉𝑂𝑈𝑇 = 𝑉𝐼𝑁 ⋅

𝑅𝐿
𝑅S + 𝑅𝐿

GAS sensor

𝑅𝑆 =
𝑅𝐿 ⋅ 𝑉𝐼𝑁 − 𝑉𝑂𝑈𝑇

𝑉𝑂𝑈𝑇

_01_WS_AnalogReadSerial

MEASUREMENTS WITH ARDUINO
The voltage divider: other resistive sensors: (analog) GAS sensor page 103

Temperature sensors

- ANALOG SENSORS

The measured thermodynamic variable is converted inside the sensor in the form of voltage,

according to a variation law specified by the manufacturer. The Arduino ADC reads this voltage

directly and, according to the manufacturer’s specification, the measured parameter can be

calculated directly in the Arduino sketch. For example the temperature sensor LM35:

- DIGITAL SENSORS

The measured parameters are transmitted to Arduino through a digital communication protocol

(e.g. SPI or I2C). The user does not need to know in detail the low level software instructions of

the communication with the sensor because software libraries are provided by the sensor

manufacturer (or by the user’s community). Once the sensor libraries have been installed in the

Arduino IDE, at first use, in the sketch it is sufficient to #include the library related to the sensor

and the reading of the parameters is done usually just with a single software instruction.

MEASUREMENTS WITH ARDUINO
The voltage divider: other resistive sensors: (analog) GAS sensor page 104

Measurements with Arduino – Ing. Paolo Guidorzi

LM 35 - ANALOG temperature sensor

It is a simple analog sensor, which provides an output voltage

proportional to the measured temperature, varying 10 mV/°C.

There are various models, for example LM35A has operating

ranges between -55°C and 150°C and LM35D has operating

ranges between 0°C and 100°C.

The 6 analog inputs of Arduino UNO have a resolution of 10 bits, that is 1024 possible values,

measuring by default an input voltage variable between 0 and 5 V (outside these values the

device is damaged).

MEASUREMENTS WITH ARDUINO
The voltage divider: other resistive sensors: (analog) GAS sensor page 105

+5V OUT GND

5
ADC INPUT 0..5 V 0.00488 V = 4.88 mV (each amplitude step)

1024
 =

10 mV
 measurement resolution 0.48 °C

°C


Measurements with Arduino – Ing. Paolo Guidorzi

LM 35 - ANALOG temperature sensor

LM35A: max 150 °C  max 1.5 V at Arduino ADC input

LM35D: max 100 °C  max 1 V at Arduino ADC input

In both cases, there is a "waste" of bits, in other words of resolution, because the

whole ADC measurement range (5V over 10 bit = 1024 steps) is not used.

tempC = aRead*0.488

Example of temperature measurement:

The Arduino program reads the value 43 on the ADC. Remembering that the read

value can vary from 0 to 1023 and that each step is 4.88 mV (0.48 °C), the input

voltage to the ADC is nominally 43*4.88 = 210 mV (0.21 V), corresponding to 21 °C.

MEASUREMENTS WITH ARDUINO
The voltage divider: other resistive sensors: (analog) GAS sensor page 106

0 307 1023

0 1.5 V 5 V

equivalent to  8.26 bit

0 204 1023

0 1 V 5 V

equivalent to  7.67 bit

Measurements with Arduino – Ing. Paolo Guidorzi

LM 35 - ANALOG temperature sensor

In Arduino a “trick” can be used to increase the accuracy of the measurement, when

the range of measured voltages is narrow. The voltage range of the ADC inputs can

be set with the analogReference software instruction:

analogReference(DEFAULT); // The ADC range is the Arduino voltage (5V or 3.3V)

analogReference(INTERNAL); // The ADC range is 1.1 V

analogReference(EXTERNAL); // The ADC range is the voltage applied to EXT pin (≤ 5 V)

Setting to INTERNAL:

The resolution is now about 0.1 °C instead of 0.48 °C tempC = aRead*0.10742

NOTE: the ADC input voltage must never exceed the value set with the analogReference

instruction. Setting INTERNAL, the max measurable temperature with LM35 is 110 °C

MEASUREMENTS WITH ARDUINO
The voltage divider: other resistive sensors: (analog) GAS sensor page 107

1.1
ADC INPUT 0 .. 1.1 V 0.00107 V 1.07 mV

1024
 = 

Measurements with Arduino – Ing. Paolo Guidorzi

Thermocouple + MAX6675 digital interface

A thermocouple can be used very easily with Arduino by

using the MAX6675 circuit, which contains a 12-bit ADC

and automatically applies cold junction compensation.

Type K thermocouples must be used and the temperature

resolution is 0.25 °C. Communication takes place with

Arduino using the SPI protocol.

Software instructions for the use:

#include "max6675.h“ // library to be included at beginning of the source code

…

// Pin connections (SPI bus)

int thermoSO = 4;

int thermoCS = 5;

int thermoSCK = 6;

…

thermocouple.readCelsius() // function to read the temperature from the MAX6675

MEASUREMENTS WITH ARDUINO
The voltage divider: other resistive sensors: (analog) GAS sensor page 108

Before first use, the MAX6675

library by Adafruit must be installed

in the Arduino IDE

Measurements with Arduino – Ing. Paolo Guidorzi

Temperature and Humidity sensors DHT11 and DHT22

These 2 low cost devices contain a temperature sensor and a relative

humidity sensor and communicate with Arduino digitally, using a single wire.

DHT11 (blue): temperature range 0..50 °C, error on relative humidity 5%.

DHT22 (white): temperature range -40..80 °C, error on relative humidity 2%.

Software instructions for the use:

#include "DHT.h“ // library to be included at beginning of the source code

…

#define DHTPIN 2 // Arduino digital pin connected to the DHT sensor

#define DHTTYPE DHT11 // set DHT11 or DHT22

…

DHT dht1(DHTPIN, DHTTYPE); // Initialize the sensor

float h;

float t;

…

dht1.begin(); // This instruction in the setup function

…

h = dht1.readHumidity(); // read humidity and put in variable h

t = dht1.readTemperature(); // read temperature in celsius and put in variable t

MEASUREMENTS WITH ARDUINO
The voltage divider: other resistive sensors: (analog) GAS sensor page 109

Two libraries must be installed in

the Arduino IDE at first use:

DHT Sensor Library:

https://github.com/adafruit/DHT-

sensor-library

Adafruit Unified Sensor Lib:

https://github.com/adafruit/Adafr

uit_Sensor

Measurements with Arduino – Ing. Paolo Guidorzi

https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/Adafruit_Sensor

Temperature sensor DS18B20

The DS18B20 is a temperature sensor that communicates

digitally with Arduino with a 1-wire interface (many sensors

can be connected on the same bus). The temperature range

covered varies from -55 to +125 °C with +/- 0.5 °C accuracy.

Software instructions for the use (example with 2 sensors):
#include <OneWire.h>

#include <DallasTemperature.h>

#define ONE_WIRE_BUS 2 // Pin bus sensors (all)

OneWire oneWire(ONE_WIRE_BUS); // Open communication

DallasTemperature sensors(&oneWire); // Setup

float Temp1;

float Temp2;

…

sensors.begin(); // Start sensors

…

sensors.requestTemperatures(); // Read temperatures from all sensors

Temp1 = sensors.getTempCByIndex(0); // Temperature from sensor 1

Temp2 = sensors.getTempCByIndex(1); // Temperature from sensor 2

MEASUREMENTS WITH ARDUINO
The voltage divider: other resistive sensors: (analog) GAS sensor page 110

Two libraries must be installed in the Arduino IDE

at first use:

1-Wire bus:

http://www.pjrc.com/teensy/arduino_libraries/One

Wire.zip

Dallas Temperature:

https://github.com/milesburton/Arduino-

Temperature-Control-Library

Put a 5k resistor between +5V

(red wire) and data bus (yellow)

Measurements with Arduino – Ing. Paolo Guidorzi

http://www.pjrc.com/teensy/arduino_libraries/OneWire.zip
https://github.com/milesburton/Arduino-Temperature-Control-Library

Temperature and pressure sensor BMP280

BMP280. I2C and SPI interface

Pressure:

Range: 300-1100 hPa

Resolution: 0.16 Pa

Noise: 1.3 Pa

Temperature:

Range: -40 / +85 °C

Resolution: 0.01 °C

https://www.sunfounder.com/bmp280-barometric-pressure-temperature-altitude-sensor-module.html

https://www.bosch-sensortec.com/bst/products/all_products/bmp280

MEASUREMENTS WITH ARDUINO
Temperature and pressure sensor page 111

Measurements with Arduino – Ing. Paolo Guidorzi

https://www.sunfounder.com/bmp280-barometric-pressure-temperature-altitude-sensor-module.html
https://www.bosch-sensortec.com/bst/products/all_products/bmp280

_11_BMP280_TempPressAlt

MEASUREMENTS WITH ARDUINO
Temperature and pressure sensor page 112

Serial 7-segment display

To avoid having to command every single

segment and make it easier to use, this

shield includes a microscopic Arduino that

communicates with the main Arduino and receives commands on what to display. It can connect

in 3 ways: serial (TTL), SPI serial or I2C serial.

https://www.sparkfun.com/products/11442

MEASUREMENTS WITH ARDUINO
Serial 7-segment display page 113

Measurements with Arduino – Ing. Paolo Guidorzi

https://www.sparkfun.com/products/11442

Connection via SPI

SPI: Serial Peripheral Interface

4 wires bus: MOSI (Master Out Slave In), MISO (Master In Slave Out),

SCK (Clock), SS (Slave Select, SS1, SS2, .., SSn)

https://www.sparkfun.com/products/11442

MEASUREMENTS WITH ARDUINO
Serial 7-segment display page 114

Measurements with Arduino – Ing. Paolo Guidorzi

https://www.sparkfun.com/products/11442

https://www.sparkfun.com/products/11442

_05_7SegmentDisplay

MEASUREMENTS WITH ARDUINO
Serial 7-segment display page 115

https://www.sparkfun.com/products/11442

https://www.sparkfun.com/products/11442

_05_7SegmentDisplay

MEASUREMENTS WITH ARDUINO
Serial 7-segment display page 116

https://www.sparkfun.com/products/11442

Color TFT graphic display (2.8”)

240 x 320 pixel, 16 or 18 bit color depth

Interfaced via SPI (TFT part) with Arduino:

SPI Clock: pin 13

SPI MISO: pin 12

SPI MOSI: pin 11

SPI CS (chip select): pin 10

SPI DS (data select): pin 9

The touch screen can be connected

via I2C and the microSD via SPI

Libraries to install:

Adafruit_ILI9341 and Adafruit_GFX

https://www.adafruit.com/product/1651

MEASUREMENTS WITH ARDUINO
Color TFT graphic display page 117

Measurements with Arduino – Ing. Paolo Guidorzi

https://www.adafruit.com/product/1651

https://www.sparkfun.com/products/11442

_06_TFT28Adafruit

F(tells the compiler to store

the string in the flash memory

instead of internal RAM

SPI connection pin numbers

MEASUREMENTS WITH ARDUINO
Color TFT graphic display page 118

https://www.sparkfun.com/products/11442

https://www.sparkfun.com/products/11442

_06_TFT28Adafruit

Functions to test graphic

instructions

MEASUREMENTS WITH ARDUINO
Color TFT graphic display page 119

https://www.sparkfun.com/products/11442

Connection of another TFT graphic display (1.8’’)

160 x 128 pixel

Interfaced via SPI

Libraries to install:

Adafruit GFX and Adafruit ST7735

To use microSD, install the corresponding

SD library

https://www.arduino.cc/en/Main/GTFT

MEASUREMENTS WITH ARDUINO
Color TFT graphic display page 120

Measurements with Arduino – Ing. Paolo Guidorzi

https://www.arduino.cc/en/Main/GTFT

https://www.arduino.cc/en/Main/GTFT

_07_TFTPong_TFT18

MEASUREMENTS WITH ARDUINO
Color TFT graphic display page 121

https://www.arduino.cc/en/Main/GTFT

https://www.arduino.cc/en/Main/GTFT

_08_TFTGraph_TFT18

MEASUREMENTS WITH ARDUINO
Color TFT graphic display page 122

https://www.arduino.cc/en/Main/GTFT

Connection of another TFT graphic display (2.2’’) using Arduino MEGA2560

240 x 320 pixel, 16 bit color depth

Interfacing viaSPI to

Arduino MEGA2560:

SPI SCK (Clock): pin 52

SPI MISO: pin 50

SPI MOSI: pin 51

SPI CS (chip select): pin 53

SPI RST (reset): pin 9

SPI DC (data/command select): pin 8

Install libraries:

Adafruit_ILI9340 and Adafruit_GFX

https://www.adafruit.com/product/1480

MEASUREMENTS WITH ARDUINO
Color TFT graphic display page 123

Measurements with Arduino – Ing. Paolo Guidorzi

https://www.adafruit.com/product/1480

Oscilloscope of analog inputs A0 e A1

_09_MyScopeTFT22

MEASUREMENTS WITH ARDUINO
Color TFT graphic display page 124

Let's add to the previous example an external DAC converter and an external ADC

converter

Digital to Analog Converter

DAC MCP4725 (12 bit)
https://learn.adafruit.com/mcp4725-12-bit-dac-tutorial

Analog to Digital Converter (x4)

ADC ADS1015 (12 bit)
https://learn.adafruit.com/adafruit-4-channel-adc-breakouts

Both are connected to Arduino using I2C protocol, on different logic addresses.

Using Arduino MEGA, the pins dedicated to I2C are 20 (SDA) and 21 (SCL); both devices are

connected in parallel to this bus. The address is fixed in hardware mode on the respective card:

MCP4725: A0 unconnected→ address 0x62; A0 connected to VDD → address 0x63

ADS1015: ADDR connected to GND → address 0x48; ADDR connected to VDD → address 0x49

ADDR connected to SDA→ address 0x4A; ADDR connected to SCL→ address 0x4B

MEASUREMENTS WITH ARDUINO
External DAC and ADC converters page 125

HEXADECIMAL ↔ DECIMAL ↔ BINARY

0x4A ↔ 74 ↔ 1001010

Measurements with Arduino – Ing. Paolo Guidorzi

https://learn.adafruit.com/mcp4725-12-bit-dac-tutorial
https://learn.adafruit.com/adafruit-4-channel-adc-breakouts

We have now the TFT

display connected on the

SPI bus and the ADC and

DAC connected both on the

same I2C bus but with different

addresses. The loaded

sketch reads the voltage on

the analog input of Arduino

on the pin A0 and draw it on

the screen. In addition, the

external ADC reads a voltage

from its input A0, this value is

drawn on the screen and the external DAC is set with the same voltage. The initial part of the

sketch includes all the libraries necessary for the operation of the devices used. In the setup part

these are initialized.

The MCP4725 DAC address is set to 0x62 (its address selection pin is left disconnected), the

ADS1015 ADC address is set to 0x48 (its address selection pin is grounded). The SDAs of both

go to pin 20 of the Arduino board and the SCLs to pin 21.

MEASUREMENTS WITH ARDUINO
External DAC and ADC converters page 126

Measurements with Arduino – Ing. Paolo Guidorzi

_10_ADC_DAC_TFT22

Setup TFT display

Setup DAC

Setup ADC

GAIN sets the

range

MEASUREMENTS WITH ARDUINO
External DAC and ADC converters page 127

Potentiometer (divider) → external ADC

External ADC → internal DAC → internal ADC

Internal and external ADC plots are overlapped

_10_ADC_DAC_TFT22

0..1023 → 0..5V

Reads ADC

Writes DAC

Max 4,096 V Input

MEASUREMENTS WITH ARDUINO
External DAC and ADC converters page 128

Bidirectional data communication between Arduino and computer (via serial port)

One of the many shields of Arduino allows

to save data on microSD or other types of

memories rewritable, but it can be useful to

receive and process data in real time directly

from Arduino. It is possible to do this in many

ways, for example via WiFi or Ethernet

shield or Bluetooth or GSM (the possibilities

are endless). An option at no cost, without

the use of additional shields consists in http://www.lazarus-ide.org/

using the Arduino serial monitor port: on the computer runs a very simple ad-hoc software,

which reads the data that Arduino sends to the serial port (in the form of text strings), converts

into numerical values and uses them for processing or archiving on computers, in real time.

Obviously also communication from computer to Arduino can be implemented, in a similar way.

An example is now shown, made using the Lazarus compiler, i.e. free objects Pascal, free,

open source (GPL/LGPL) and cross-platform (Windows, OSX, Linux).

MEASUREMENTS WITH ARDUINO
Bidirectional data communication between Arduino and computer (via serial port) page 129

Measurements with Arduino – Ing. Paolo Guidorzi

http://www.lazarus-ide.org/

In this example the BMP280 is again used and the temperature

value is sent to the computer through the serial port, in

continuous way. To facilitate the interpretation of the data

(which are sent in the form of a text string and in

non-synchronized mode between Arduino and the computer),

these will be formatted in the form [xx.yy] where xx.yy is the

temperature, two decimal places. The computer program reads

the serial data, extrapolates the string formed by the 7

characters [xx.yy], converts xx.yy to the form xx,yy (in Italy

the numerical format provides the comma) and converts this string in numerical value, usable for

processing or direct storage on the hard disk.

The sketch loaded on Arduino (MEGA) is a simplified version of the one previously seen for the

BMP280 test.The program created with Lazarus to read the serial port includes the installation

of the free 5dpoSerial library https://sourceforge.net/projects/sdpo-cl/files/ useful to manage the

communication on serial port (virtual).

Both software sources are available for download.

MEASUREMENTS WITH ARDUINO
Bidirectional data communication between Arduino and computer (via serial port) page 130

Measurements with Arduino – Ing. Paolo Guidorzi

https://sourceforge.net/projects/sdpo-cl/files/

Modified version of the sketch from the previous example. On serial port only the temperature is

written, adding the square brackets before and after the numerical value.

_12_BMP280_TempArduino

MEASUREMENTS WITH ARDUINO
Bidirectional data communication between Arduino and computer (via serial port) page 131

Main routine of the Pascal program

written with Lazarus. At regular

intervals the serial port is read

and the string containing the

temperature value is extrapolated.

The dot is converted into a comma

and the string is converted into

a numerical value.

_12_Lazarus read serial from Arduino

MEASUREMENTS WITH ARDUINO
Bidirectional data communication between Arduino and computer (via serial port) page 132

Data communication from smartphone to Arduino via Bluetooth

A shield called HC-06 is used, connected to Arduino

MEGA. This card contains a transceiver Bluetooth and

works at 3.3 V (even if it is indicated 3.6-6V).

Communicates with Arduino through a serial port, so by a

TX wire and an RX wire. These two signals follow the 3.3V

CMOS standard so as not to damage the card a level

shifter is required, to transform digital signals from 5V

used on Arduino board (UNO or MEGA) to 3.3V and to

transform the 3.3V signals from the shield to the 5V

requested by Arduino.

Serial port 1 (of 4) of Arduino

MEGA is used: pin 18 (TX1)

and 19 (RX1). The TXD pin

of the HC-06 card is therefore

connected to the level shifter

and then to Arduino's RX1

pin. The RXD pin of the

HC-06 card is connected to the level shifter and after the conversion to the TX1 pin of Arduino.

https://www.sunfounder.com/bluetooth-transceiver-module-hc-06-rs232-4-pin-serial.html

MEASUREMENTS WITH ARDUINO
Data communication from smartphone to Arduino via Bluetooth page 133

Measurements with Arduino – Ing. Paolo Guidorzi

https://www.sunfounder.com/bluetooth-transceiver-module-hc-06-rs232-4-pin-serial.html

The sketch uploaded on Arduino initializes

the two serial ports used: Serial is the

virtual serial port on computer that allows

to display the serial monitor and Serial1 is

instead one of the 4 hardware serial ports

of Arduino MEGA and in particular port 1,

that uses pins 19 and 18.

In the main loop of the sketch, Arduino

reads continuously what is received from

the Serial1 port (HC-06) and copy it on the

virtual serial port, to be displayed on the

computer.

The strings are sent from the Bluetooth of a

smartphone via a free app called Arduino

Bluetooth Controller. In this sketch the

message received via Bluetooth is only

displayed but the same operating scheme

can be used to make Arduino perform

remote actions (e.g. watering the lawn or

turn on the house heating or turn on the

light of a room), recognizing a certain

command.
http://www.instructables.com/id/Add-bluetooth-to-your-Arduino-project-ArduinoHC-06/

_13_HC06_Bluetooth

MEASUREMENTS WITH ARDUINO
Data communication from smartphone to Arduino via Bluetooth page 134

http://www.instructables.com/id/Add-bluetooth-to-your-Arduino-project-ArduinoHC-06/

MEASUREMENTS WITH ARDUINO
Data communication from smartphone to Arduino via Bluetooth page 135

Measurements with Arduino – Ing. Paolo Guidorzi

1. The HC-06 module will appear in the list of Bluetooth devices

2. With the Arduino Bluetooth Controller (Android) app, connect to HC-06 in "Terminal" mode

3. Once connected, the flashing LED of the HC-06 will remain steady on

4. In the Arduino IDE on the computer open the serial monitor

5. From the app terminal on the phone, type a sentence and send it via Bluetooth

6. In the serial monitor on the computer the sentence received from Arduino will appear

MEASUREMENTS WITH ARDUINO
Data communication from smartphone to Arduino via Bluetooth page 136

Measurements with Arduino – Ing. Paolo Guidorzi

Using of a Multiplexer

It may sometimes be necessary to use a multiplexer, an

electronic device that works in a similar way to a rotary

selector, when for example it’s required to connect

sequentially a single ADC with several external analog

sensors.

The shield used is a simple adapter of the CD74HC4067

integrated circuit. It can be powered from 2V to 6V.

Through the 4 digital inputs S0..S3 can be selected

which of the 16 pins C0..C15 is connected to the (single)

SIG pin (in bidirectional mode) via binary logic: the

number in base 2 set to S0..S3 pins is converted in the

decimal Cx number. The EN pin if connected at a HIGH

logic level disables all connections (inverted logic). The

use is very simple: 4 Arduino digital outputs are

connected to the 4 selection pins S0..S3 and by using

binary logic the desired electrical connection between

SIG and C0..15 is established.

https://www.sparkfun.com/products/9056

MEASUREMENTS WITH ARDUINO
Using of a Multiplexer page 137

Measurements with Arduino – Ing. Paolo Guidorzi

https://www.sparkfun.com/products/9056

In this example, Arduino uses pins 2, 3, 4, 5 to control

the S0..S3 multiplexer selector. 4 LEDs are connected

(+) to the first 4 outputs of the multiplexer. The other

pins of the 4 LEDs are all connected in common to a

1K resistor, connected to ground. The SIG multiplexer

input is connected to 5V. The sketch enables the first

4 outputs in sequence, keeping them on for one

second, then the 4 LEDs light up in sequence. Note

that in the binary pin selection number, the rightmost

digit is S0, the penultimate digit is S1, etc..

_14_Multiplexer

MEASUREMENTS WITH ARDUINO
Using of a Multiplexer page 138

The "electronic nose" - Integrated multi-sensor platform based on Arduino

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 139

Measurements with Arduino – Ing. Paolo Guidorzi

SENSORS USED:

TEMPERATURE (Celsius)

RELATIVE HUMIDITY (%)

PRESSURE (Pa)

Brightness (Lux)

MQ-3: Alcohol

MQ-4: CH4 methane, natural gas

MQ-5: LPG, natural gas

MQ-6: LPG, iso-butane, propane

MQ-7: CO

MQ-8: Hydrogen H2

MQ-135: Ammonia NH3, NOx, alcohol, benzene, fumes, CO2, etc.

AIR-Q (MP-503): Alcohol and fumes

HCHO (WSP2110): Organic gases, toluene, benzene, methanol

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 140

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 141

Measurements with Arduino – Ing. Paolo Guidorzi

The instrument can operate either through an external power supply (9V or 12V), to be connected to the red

socket "9", or using a normal portable USB powerbank. In case of USB power supply, both sockets "7" and

"8" must be connected to the powerbank (one powers Arduino and the other one powers the sensors board).

1: ON/OFF: (when using 9V or 12V power supply)

2: RESET button: to restart the measurement log on a new file (an incremental number filename is

automatically assigned).

3: Data log ON/OFF: enables or disables data writing to file. Data writing can be enabled and disabled

several times during the measurement, without the need to reset the instrument. Data will be appended to

the current file when the option is enabled.

4: FAST / SLOW capture: Changes the data sampling period. When the mode is SLOW the numerical

values of each sensor are written to the display, each cycle, when the mode is FAST only the graph is

updated.

5: Select (a) sampling from all gas sensors plus Temperature, Relative Humidity, Pressure and Brightness,

or (b) Temperature, Relative Humidity, Pressure and Brightness only. Only the saved data are shown in the

graph.

6: Turns ON or OFF the forced air circulation fan.

7: Arduino USB power supply and connection to PC (only for programming)

8: USB sensor power supply. Use 7 and 8 together to power from battery pack

9: Red power socket: 9V or 12V power supply

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 142

Measurements with Arduino – Ing. Paolo Guidorzi

The measured data is saved on the SD card, in text format, which can be imported directly into Excel. When

the software is switched on, it checks the correct functioning of the system components. In case "sensor error"

is shown, the sensor card is probably missing power supply ("8") and is being powered via USB. In case of

using socket "9" (not USB) both USB cables can be removed. The current size of the SD and the name of the

log file are also shown when the power is turned on. Each time the power is turned on, the number associated

with the data saving file name is increased by one, starting with the number of the last file saved previously.

Empty the card to restart the numbering from scratch.

Note: the measured data of Temperature, Relative Humidity, Pressure and Brightness are represented by the

correct value. The data from the gas sensors require calibration depending on the type of sensor and also on

the current temperature and humidity, following the specifications in the datasheets of the individual sensors.

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 143

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 144

#include of libraries for the used

digital sensors.

Initialization of sensors and

devices (ADC, Graphic display,…).

Measurements with Arduino – Ing. Paolo Guidorzi

Definition of variables and

constants

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 145

Measurements with Arduino – Ing. Paolo Guidorzi

Setup: sensors and variables

initialization

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 146

Measurements with Arduino – Ing. Paolo Guidorzi

Setup: sensors and variables

initialization

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 147

Measurements with Arduino – Ing. Paolo Guidorzi

Setup: sensors and variables

initialization

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 148

Measurements with Arduino – Ing. Paolo Guidorzi

Setup: sensors and variables

initialization

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 149

Measurements with Arduino – Ing. Paolo Guidorzi

Setup: creation of the LOG file

and saving of the first line. The

"flush()" command forces the

writing, thus creating the file

Name assignment of the

LOG file, with filename

progressive numbering

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 150

Measurements with Arduino – Ing. Paolo Guidorzi

Creating the skeleton of the

display graphic

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 151

Measurements with Arduino – Ing. Paolo Guidorzi

Creating the skeleton of the

display graphic

END of SETUP sketch part

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 152

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 153

Measurements with Arduino – Ing. Paolo Guidorzi

Declaration of some variables

and start of the LOOP part

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 154

Measurements with Arduino – Ing. Paolo Guidorzi

Writing the first line in the

display (temperature, humidity,

pressure, time,...)

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 155

Measurements with Arduino – Ing. Paolo Guidorzi

Acquisition of data from the

various gas sensors, writing the

value on the display (if the

option is enabled) and graphic

plot

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 156

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 157

Acquisition of data from the

various gas sensors, writing the

value on the display (if the

option is enabled) and graphic

plot

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 158

Acquisition of data from the

various gas sensors, writing the

value on the display (if the

option is enabled) and graphic

plot

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 159

Acquisition of data from the

various gas sensors, writing the

value on the display (if the

option is enabled) and graphic

plot

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 160

Acquisition of data from the

various gas sensors, writing the

value on the display (if the

option is enabled) and graphic

plot

Measurements with Arduino – Ing. Paolo Guidorzi

Graph of the values from the

other sensors. Reading of the

switches to enable the various

options

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 161

Measurements with Arduino – Ing. Paolo Guidorzi

Writing data to SD (if the option

is enabled)

END OF PROGRAM

MEASUREMENTS WITH ARDUINO
The "electronic nose" - Integrated multi-sensor platform based on Arduino page 162

Measurements with Arduino – Ing. Paolo Guidorzi

MEASUREMENTS WITH ARDUINO

Measurements with Arduino – Ing. Paolo Guidorzi

Ing. Paolo Guidorzi
Dipartimento di Ingegneria Industriale

paolo.guidorzi@unibo.it

http://acustica.ing.unibo.it/Staff/paolo/index.html

Some images and screenshots are taken from the site www.arduino.cc and other public domain or CC-BY-SA websites

These slides are licensed CC-BY-SA

https://creativecommons.org/licenses/by-sa/3.0/it/

http://acustica.ing.unibo.it/Staff/paolo/index.html
http://www.arduino.cc/
https://creativecommons.org/licenses/by-sa/3.0/it/

